注册账号

找回密码

设置密码

绑定手机号

注册领取新人学习津贴
首页 >

专升本 > 考试政策

> 2021年山东专升本高等数学 II 考试大纲
2021专升本

2021年山东专升本高等数学 II 考试大纲

2020-11-25 15:59:03 来源: 库课网校 阅读: 1892 编辑: 王老师

摘要:本科目考试要求考生掌握高等数学的基本概念、基本理论和基本方法, 主要考查学生识记、理解、计算、推理和应用能力,为进一步学习奠定基础。具体内容与要求如下:

  Ⅰ. 考试内容与要求

  本科目考试要求考生掌握高等数学的基本概念、基本理论和基本方法, 主要考查学生识记、理解、计算、推理和应用能力,为进一步学习奠定基础。具体内容与要求如下:

2021年山东专升本高等数学 II 考试大纲

  一、函数、极限与连续

  (一)函数

  1. 理解函数的概念,会求函数的定义域、表达式及函数值,会建立应用问题的函数关系。

  2. 掌握函数的有界性、单调性、周期性和奇偶性。

  3. 理解分段函数、反函数和复合函数的概念。

  4. 掌握函数的四则运算与复合运算。

  5. 掌握基本初等函数的性质及其图形,理解初等函数的概念。

  6. 理解经济学中的几种常见函数(成本函数、收益函数、利润函数、需求函数和供给函数)。

  (二)极限

  1. 理解数列极限和函数极限(包括左极限和右极限)的概念。理解函数极限存在与左极限、右极限存在之间的关系。

  2. 了解数列极限和函数极限的性质。了解数列极限和函数极限存在的两个收敛准则(夹逼准则与单调有界准则)。熟练掌握数列极限和函数极限

  的四则运算法则。

  3. 熟练掌握两个重要极限2021年山东专升本高等数学 II 考试大纲

并会用它们求函数的极限。

  4. 理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。会比较无穷小量的阶(高阶、低阶、同阶和等价)。会用等价无穷小量求极限。

  (三)连续

  1. 理解函数连续性(包括左连续和右连续)的概念,掌握函数连续与左连续、右连续之间的关系。会求函数的间断点并判断其类型。

  2. 掌握连续函数的四则运算和复合运算。理解初等函数在其定义区间内的连续性,并会利用连续性求极限。

  3. 掌握闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理、零点定理),并会应用这些性质解决相关问题。

  二、一元函数微分学

  (一)导数与微分

  1. 理解导数的概念及几何意义,会用定义求函数在一点处的导数(包括左导数和右导数)。会求平面曲线的切线方程和法线方程。理解函数的可导性与连续性之间的关系。

  2. 熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式。

  3. 掌握隐函数求导法、对数求导法。

  4. 理解高阶导数的概念,会求简单函数的高阶导数。

  5. 理解微分的概念,理解导数与微分的关系,掌握微分运算法则,会求函数的一阶微分。

  (二)中值定理及导数的应用

  1. 理解罗尔定理、拉格朗日中值定理。会用罗尔定理和拉格朗日中值定理解决相关问题。

  2.熟练掌握洛必达法则,会用洛必达法则求2021年山东专升本高等数学 II 考试大纲型未定式的极限。

  3. 理解函数极值的概念,掌握用导数判断函数的单调性和求函数极值的方法,会利用函数的单调性证明不等式,掌握函数最大值和最小值的求

  法及其应用。

  4. 会用导数判断曲线的凹凸性,会求曲线的拐点以及水平渐近线与垂直渐近线。

  5. 理解边际函数、弹性函数的概念及其实际意义,会求解简单的应用问题。

  三、一元函数积分学

  (一)不定积分

  1. 理解原函数与不定积分的概念,了解原函数存在定理,掌握不定积分的性质。

  2. 熟练掌握不定积分的基本公式。

  3. 熟练掌握不定积分的第一类、第二类换元法和分部积分法。

  (二)定积分

  1. 理解定积分的概念及几何意义,了解可积的条件。

  2. 掌握定积分的性质。

  3. 理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式。

  4. 熟练掌握定积分的换元积分法与分部积分法。

  5. 会用定积分表达和计算平面图形的面积。

  6. 会利用定积分求解经济分析中的简单应用问题。

  四、多元函数微积分学

  (一)多元函数微分学

  1. 了解二元函数的概念、几何意义及二元函数的极限与连续概念。

  2. 理解二元函数偏导数和全微分的概念。掌握二元函数的一阶、二阶偏导数的求法,会求二元函数的全微分。

  3. 掌握复合函数一阶偏导数的求法。

  4. 掌握由方程F(x, y, z)=0所确定的隐函数z=z(x, y)的一阶偏导数的计算方法。

  5. 会求二元函数的无条件极值。

  (二)二重积分

  1. 理解二重积分的概念、性质及其几何意义。

  2. 掌握二重积分在直角坐标系下的计算方法。

  五、常微分方程

  1. 理解微分方程的定义,理解微分方程的阶、解、通解、初始条件和特解等概念。

  2. 掌握可分离变量微分方程的解法。

  3. 掌握一阶线性微分方程的解法。

  Ⅱ. 考试形式与题型

  一、考试形式

  考试采用闭卷、笔试形式。试卷满分100分,考试时间120分钟。

  二、题型

  考试题型从以下类型中选择:选择题、填空题、判断题、计算题、解答题、证明题、应用题。


专升本 山东专升本
相关推荐
优课推荐